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From genes to brain to behavior:
the case of fragile X syndrome

Susan M. Rivera and Allan L. Reiss

Introduction

In this chapter, we show how neuroimaging can help

us understand complex relationships among genetic,

brain, and behavioral factors. To this aim, we will use

as a model a single-gene disorder that is very well

understood: fragile X syndrome. Because of the

wealth of information that exists on the molecular,

neuroanatomical, and behavioral aspects of this dis-

order, great strides have beenmade in understanding

the complex interplay among these scientific levels of

description, aswell as the resulting phenotypes. This,

in turn, has begun to guide treatment of the disorder

inways that are farmore specific thanwas previously

possible. While the focus throughout the chapter will

be on this single-gene disorder and its phenotypic

variants, we hope to use this as a “methodological

roadmap” and model for understanding other dis-

orders influenced by genetic factors.

Fragile X syndrome

Fragile X syndrome (FXS) is the most common

inherited cause of mental retardation. It is caused

by a trinucleotide repeat expansion (CGG)n in the

50 untranslated region of the fragile X mental

retardation 1 gene (FMR1) located at Xq27.3. The

“full mutation,” present in individuals having more

than 200 CGG repeats, involves methylation, which

stops the synthesis of the FMR1 protein (FMRP)

(Fu et al., 1991; Pieretti et al., 1991; Snow et al.,

1993; Verkerk et al., 1991; Yu et al., 1991). Fragile

X syndrome is therefore caused by an absence or

deficit of FMRP (Tassone et al., 1999). The physical

features of FXS include macroorchidism (large

testes), a long, narrow face and prominent ears,

and mild cardiac, neuroendocrine, and connective

tissue problems. However, these physical charac-

teristics can be highly variable in cognitively

affected individuals and may not be present at all

in young males and females with the full mutation.

Males with the full mutation typically exhibit mod-

erate to severe mental retardation, while females

as a group show less significant and more variable

impairment as a result of the second, normally

functioning X chromosome. The cognitive profile

of FXS includes deficits in visuospatial processing

and working memory, visual-motor coordination,

and arithmetic skills (Baumgardner et al., 1995;

Freund and Reiss, 1991; Mazzocco et al., 2006).

In addition to cognitive impairment, individuals

with FXS demonstrate a behavioral phenotype

characterized by hyperarousal, social anxiety and

withdrawal, social deficits with peers, abnormalities

in communication, unusual responses to sensory

stimuli, stereotypic behavior, gaze aversion, inatten-

tion, impulsivity, and hyperactivity (Bregman et al.,

1988; Cohen et al., 1988, 1989, 1991; Hagerman et al.,

1991; Hessl et al., 2001; Reiss and Freund, 1992;
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Sudhalter et al., 1990). The severity of the fragile

X phenotype dependsmainly on the degree of abnor-

mal methylation of the FMR1 gene and, in females,

the degree of skewing of normal X chromosome

inactivation (Martinez et al., 2005).

The association of autism with FXS has been

somewhat controversial though most investigators

find an increased prevalence and severity of autistic

behaviors in individuals with FXS compared to

IQ-matched persons with idiopathic developmen-

tal disability. For example, 25%–40% of individuals

with the full mutation meet criteria for autistic dis-

order (Bailey et al., 1998b; Kaufmann et al., 2004;

Philofsky et al., 2004; Rogers et al., 2001); however,

a range of autistic symptoms is present in many

individuals with FXS who do not meet full diagnostic

criteria for autistic disorder.

Since the identification of the gene responsible

for FXS in 1991 (Pieretti et al., 1991), an explosion of

research has emerged investigating the relation-

ships between molecular variables, behavior, and

the brain in FXS. In understanding these relation-

ships, it is important to highlight the complex inter-

play between various molecular variables. The

repeat size and methylation-dependent expression

of both messenger RNA (mRNA) and FMRP protein

are known to directly influence outcomes, includ-

ing cognitive function. This is true in both the full

mutation (defined by more than 200 CGG repeats)

and the “premutation,” which is defined by ~50–200

CGG repeats (Allen et al., 2005; Kaufmann et al.,

1999; Koukoui and Chaudhuri, 2007). Furthermore,

the FMR1 gene gives rise to at least two distinct

molecular pathogenic mechanisms (protein defi-

ciency vs. RNA toxicity) and attendant neurochem-

ical processes, depending on the size of the CGG

repeat and the sex of the affected individual. It is

therefore more useful to think of a spectrum of

involvement beginning with individuals with the full

fragile X mutation, where FMRP is generally low or

absent, with a gene dose–response curve in females

as a consequence of variable X chromosomal acti-

vation (fraction of normal X allele active). Next on

this continuum are individuals who are mosaic for

mutations in the FMR1 gene (whereby some cells

express FMRP and others do not). Depending

on the amount of FMRP being expressed, these

individuals can exhibit varying severity of the char-

acteristic FXS full-mutation phenotype. Carriers of

the premutation (with ~50–200 CGG repeats and

absence of aberrant methylation) typically express

normal levels of FMRP, but those in the upper

portion of the premutation range appear to be at

risk for exhibiting lower levels of FMRP and higher

than normal FMR1 mRNA (Tassone et al., 2000a).

In association with the molecular phenomenon of

excessFMR1mRNA,one could add to this continuum

a recently defined late-onset progressive neurologic

disorder that has been reported in some older men

with the fragile X premutation (Berry-Kravis et al.,

2003; Hagerman et al., 2001, 2004; Hall et al., 2005;

Jacquemont et al., 2003, 2004). This syndrome has

been termed fragile X-associated tremor/ataxia syn-

drome (FXTAS). Symptoms of FXTAS include inten-

tion tremor, gait ataxia, neuropathy, parkinsonian

features, cognitive decline, and dementia. The patho-

genesis of FXTAS is thought to result from over-

expression and toxicity of FMR1mRNA (Jacquemont

et al., 2007) (see Figure 13.1). As a result of these

characteristics, fragile X provides a unique model for

developing a “molecules to mind” explanation of a

neurogenetic disorder that can then beused to gener-

ate hypotheses about the genetic basis of disorders

with less clear molecular mechanisms.

FMR1 protein and brain development

Fragile X mental retardation protein is found in

both the dendrites and synapses of neurons (Devys

et al., 1993; Feng et al., 1997) where it is predomin-

antly associated with actively translating ribosomes

during protein synthesis (Khandjian et al., 1996).

During normal development, FMRP is produced at

synapses in response to synaptic activation, and it

has been found to be increased in the brain under-

going active synaptogenesis in response to motor

learning or enriched environments (Irwin et al., 2005).

In individuals with FXS, reductions or absence of

FMRP cause developmental changes at the neuronal
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level, predominantly impairments in spine matur-

ation and a failure of normal synaptic pruning.

Indeed, evidence of the deleterious effects of sub-

optimal levels of FMRP on the structure and func-

tion of both dendrites and synapses exists from

studying human postmortem tissue (Hinton et al.,

1991; Irwin et al., 2000; Rudelli et al., 1985) and from

observing cortical neurons of an FMR1-knockout

mouse (Braun and Segal, 2000; Oostra and Hoogev-

een, 1997; Pieretti et al., 1991). Consistent with the

abnormal neuron phenotypes found in both fragile

X patients and FMRP-deficient mice, several FMRP

mRNA targets that encode proteins involved in axon

guidance or synaptic functions have been identified

using microarrays (Brown et al., 2001). These neuro-

developmental processes lead to both structural and

functional irregularities that can be visualized using

brain imaging methodologies.

In what follows we will review findings that dem-

onstrate the “genes to brain to behavior” approach

by combining molecular with either behavioral or

brain imaging research in the full fragile X mutation,

premutation, and FXTAS phenotypes that exist as

part of the spectrum mentioned above.

From genes to behavior

Findings from studies of the full mutation

A large number of published studies have shown

that FMRP depletion is significantly related to global

Normal FMR1 gene

Premutation FMR1 gene

Full mutation FMR1 gene

mRNA

FMRP

No FMRP

Normal to slightly
lowered FMRP

Excess mRNA

FXTAS

fragile X syndrome

Figure 13.1. The relationship between fragile X mental retardation (FMR1) gene activity, fragile X mental retardation

protein (FMRP) production, and molecular pathogenic mechanisms in fragile X syndrome. In a normal gene

(<55 CGG repeats), mRNA leads to the production of normal amounts of FMR1 protein (FMRP). In the FX premutation

(55–200 CGG repeats), an excess level of messenger RNA (mRNA) is produced, resulting in normal to slightly lowered

FMRP and potentially leading to the adult neurological disorder of fragile X-associated tremor/ataxia syndrome (FXTAS).

In individuals with the full mutation (>200 CGG repeats), the absence of mRNA and FMRP leads to the developmental

disorder fragile X syndrome.

220 Section 2: Developmental neuropsychiatric disorders
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cognitive deficits and behavioral problems, both in

males and females with the full mutation (Bailey

et al., 1998a; Dyer-Friedman et al., 2002; Kaufmann

et al., 1999; Tassone et al., 1999). The results from a

longitudinal study of young males with the fragile

X full mutation showed that FMRP level is signifi-

cantly related to the level of cognitive-behavioral

development assessed by the Battelle Developmental

Inventory (Bailey et al., 2001). Furthermore, in

research comparing fully methylated versus par-

tially methylated (mosaic) males, those who were

fully methylated were found to be more likely to

show a decrease in IQ over time (Merenstein et al.,

1996). Even more specifically, Wright-Talamante

et al. (1996) reported that there was no significant

IQ decline in young males with less than 50%meth-

ylation of the full mutation, suggesting that a small

to moderate amount of FMRP production partially

protects against significant IQ decline. Loesch et al.

(2004) also demonstrated a strong relationship

between FMRP depletion and overall cognitive

deficit, as well as specific deficits in processing

speed, short-term memory, and the ability to con-

trol attention, especially in the context of regulating

goal-directed behavior, in subjects with the fragile

X full mutation. With respect to behavior, a common

and significant problem observed in many males

with FXS is the tendency to demonstrate autonomic

hyperarousal in the face of environmental stressors,

particularly in social contexts. Hyperarousal in FXS is

manifest as overt symptoms of anxiety, turning

away of the face and body from others, stereotypic

motor and language characteristics, and attempts

to escape from the stressful conditions. As might

be surmised from this description, such behaviors

can be a detriment to the establishment of devel-

opmentally appropriate peer relationships. Motoric

restlessness and impulsive behavior are also quite

common in males with FXS, particularly during the

preschool and early school-age years.

In females with the full mutation, strong evi-

dence has been demonstrated for the relationships

between specific cognitive scores and the activation

ratio – the ratio of affected/unaffected activated

X chromosomes, which is highly correlated with

FMRP (Abrams et al., 1994; Reiss et al., 1995b). For

example, in a study of molecular and phenotypic

correlations in females with fragile X, it was found

that the X inactivation ratio was strongly and posi-

tively correlated with a composite measure of

executive function (Sobesky et al., 1996), suggesting

that these essential cognitive skills are especially

sensitive to levels of FMRP. Like males with FXS,

females with the full mutation are also at risk for

behavioral difficulties, though manifestations of

hyperarousal and hyperactivity may be less severe.

Findings from studies of the premutation

As described in the section above, the association

of cognitive and behavioral dysfunction with the

molecular finding of reduced FMRP has been

clearly established. In contrast, there is far less cer-

tainty about molecular or brain mechanisms that

may put individuals with the fragile X premutation

at higher risk for cognitive and behavioral dysfunc-

tion. Further complicating this area of investigation

is an increasing awareness that the premutation

should not be considered a homogeneous molecu-

lar diagnostic category. In particular, the concept of

a “continuum” of effects may apply to individuals

with the premutation as well as to the entire spec-

trum of effects associated with FMR1 mutations.

Finally, environmental influences may be particu-

larly relevant for individuals with the premutation.

The great majority of mothers of children with the

full mutation carry the premutation. Thus, caregiver

stress and burden related to having one or more

children with serious developmental disability

come into play when considering the assessment

of psychological outcomes in this group.

Not surprisingly, findings pertaining to cognitive

impairment and molecular variables in individuals

with the premutation have been inconsistent. Many

studies have shown no differences in neuropsycho-

logical or behavioral profiles between premutation

carriers and non-carriers (Franke et al., 1998;

Johnston et al., 2001; Kaufmann et al., 1999; Myers

et al., 2001; Reiss et al., 1993). Other studies of both

men and women suggest that some individuals
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with the premutation may demonstrate subtle, yet

detectable, neurocognitive problems (Cornish et al.,

2005; Loesch et al., 2003a, 2003b; Moore et al.,

2004a). However, the aforementioned studies failed

to demonstrate a correlation between severity of

cognitive impairment and CGG repeat length.

Perhaps the most persuasive evidence of cognitive

involvement in femaleswith the fragile X premutation

comes from a recent study by Allen et al. (2005). This

study utilized a large sample size (66 males and

217 females) and used FMR1 repeat size as a con-

tinuous variable, rather than using a dichotomous

designation of premutation versus full mutation.

Results indicated a small, yet significant negative

effect from increasing CGG repeat on verbal IQ,

explaining approximately 4% of the variance in this

measure.

Fragile X-associated tremor/ataxia
syndrome findings

A number of studies have now been conducted on

the progressive neurologic syndrome associated

with the fragile X premutation known as FXTAS, in

which associations between molecular factors and

behavior have been demonstrated as well. Many of

the features of FXTAS, both neuropathologic and

radiologic, have been shown to be correlated with

CGG repeat length in males. For example, in male

premutation carriers with FXTAS, increasing

numbers of intranuclear inclusions in neuronal

and astrocytic cells have been observed with

increasing CGG repeat length (Greco et al., 2006).

The fact that elevatedFMR1mRNAhas been found in

peripheral blood leukocytes of carriers (Tassone

et al., 2000b, 2000c) coupled with findings of the

presence of FMR1 mRNA within the nuclear inclu-

sions in FXTAS brains (Tassone et al., 2004), supports

an RNA toxic gain-of-function model for FXTAS

pathogenesis (for a review, see: Hagerman and

Hagerman 2004). This RNA toxic gain-of-function

mechanism, in which the degree of clinical involve-

ment increases with increasing CGG repeat

length, also predicts that those patients with larger

repeat sizes will show an earlier onset of clinical

involvement. This hypothesis has been supported

by work from Tassone et al. (2007), who observed

highly significant correlations between the ages of

onset of both tremor and ataxia symptoms and the

size of the CGG repeat.

What we have summarized above represents

information that has been gained from comparing

molecular variables with measures of behavior and

symptomatology. Linking these variables has been

invaluable in furthering our understanding of the

phenotypic consequences of these genetic anomal-

ies. Brain imaging technology has further allowed

researchers to make these linkages even more

specific by relating molecular variables to vari-

ations in brain morphology. In the next section we

will summarize these findings, again delineating

what has been discovered across the full spectrum

of fragile X involvement.

From genes to brain

Findings from studies of the full mutation

There has been a great deal of work employing

structural imaging techniques in individuals with

the full mutation. A number of structural abnor-

malities have been observed in this group, includ-

ing hypoplasia of the cerebellar vermis, increased

size of the fourth and lateral ventricles (Eliez et al.,

2001; Franke et al., 1998; Johnston et al., 2001;

Kaufmann et al., 1999; Mostofsky et al., 1998; Reiss

et al., 1988, 1991, 1993, 1995a), larger caudate

nuclei, and significantly increased thalamic volume

in girls (Eliez et al., 2001; Reiss et al., 1995a).

In addition, white matter connectivity has been

assessed in FXS using diffusion tensor imaging

(DTI). Compared with controls, subjects with FXS

demonstrate evidence of aberrant white matter

structure (reduced fractional anisotropy), mostly

in fronto-striatal and parietal sensorimotor tracts

(Barnea-Goraly et al., 2003). This finding suggests

that low levels of FMRP may contribute to morpho-

logical changes in white matter tracts, possibly due

to an influence on neuronal growth and targeting as

a result of reduced or absent FMRP.

222 Section 2: Developmental neuropsychiatric disorders
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A recent volumetric neuroimaging study examined

children (age 2–7) with the fragile X full mutation,

mosaicism, and control groups of children with

developmental delay or Down syndrome (Kates

et al., 2002). This study reported relative reductions

in temporal lobe gray matter, along with relative

enlargement of parietal white matter volume, the

latter of which was seen only in individuals with

FXS and not in control groups with either develop-

mental language delay or Down syndrome. Inter-

estingly, the parietal white matter enlargement

was seen only in participants with the full mutation

and not in a group with mosaicism. This is a strong

indicator that the reduction or absence of FMRP

in the full mutation group was responsible for

this enlargement, possibly corresponding to matur-

ational and synaptic pruning failures.

Findings from studies of the premutation

Similar to studies examining potential cognitive

effects, there are some data suggesting that the

fragile X premutation (independent of FXTAS – see

next section) may be associated with variations in

brain morphology. For example, a brain magnetic

resonance imaging (MRI) study (Moore et al.,

2004b) examining gray matter density in 20 male

premutation carriers and 20 age- and IQ-matched

controls found significantly reduced gray matter

density in several regions, including the cerebel-

lum, amygdalo-hippocampus complex, and thal-

amus in the premutation group. Within this group,

increased age, increased CGG repeat size, and

decreases in the percentage of blood lymphocytes

expressing FMRP were associated with decreased

gray matter density in the amygdalo-hippocampus

complex. Though a significant association between

FMR1 mRNA and brain morphology was not

observed in this study, the fact that CGG repeat size

and FMRP were correlated with brain structure in

this study supports a putative gene-brain-behavior

mechanismof clinical involvement inmale premuta-

tion carriers. More research spanning these domains

is needed to establish whether the mechanism of

involvement is analogous to FXS and involves

reduced FMRP (for example in premutation carriers

with high repeat number), is analogous to FXTAS

and involves toxic elevation of FMR1 mRNA, or

whether there are multiple genetic and environ-

mental influences on brain function and behavior

in this group.

Fragile X-associated tremor/ataxia
syndrome findings

Another controlled study of adult male premuta-

tion carriers, in this case with and without FXTAS,

involved a molecular analysis of FMR1 expression,

quantitative neuroimaging, and cognitive testing

(Cohen et al., 2006). The study reported significant

whole-brain, cerebrum, and cerebellar volume loss,

as well as increases in whole-brain white matter

hyperintensity volume associated with FXTAS.

These changes correlated with CGG repeat number

and became more severe with age. Associations

were also observed between CGG repeat length

and cognitive ability in the premutation carriers,

including the sample without FXTAS, suggesting

that molecular abnormalities may contribute to

cognitive decline prior to manifestation of obvious

structural abnormalities.

With these studies we have come a long way in

understanding, not only the phenotypic conse-

quences of this single-gene disorder, but how these

factors relate to abnormalities in specific brain

regions. What follows is a review of studies that

bring this relationship “full circle” to understanding

how gene alterations lead to specific brain abnor-

malities, which in turn result in behaviors and

symptoms related to the phenotypes expressed.

From genes to brain to behavior

Findings from studies of the full mutation

There are a number of examples in the literature,

across the fragile X phenotypes that we have been

discussing, that have demonstrated direct links

between genetic factors, localized brain function,

Chapter 13: Fragile X: from genes to behavior 223
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and the ensuing cognitive impairments associated

with dysfunction occurring in those brain regions.

Several functional MRI (fMRI) studies have now

demonstrated a “dose–response” effect of FMRP

on brain activation. One such study examined the

neural substrate of visuospatial working memory in

females with FXS using standard 1-back and 2-back

tasks (Kwon et al., 2002). Behaviorally, subjects with

the full mutation performed significantly worse

on the more difficult, 2-back task than did age-

matched controls. In terms of brain activation,

comparison subjects showed a significant increase

in the inferior frontal gyrus, middle frontal gyrus,

superior parietal lobule, and supramarginal gyrus

on the 2-back compared to the 1-back task, while

subjects with FXS showed no change in activation

between the two. Furthermore, molecular measures

correlated with brain activation on this task since

significant correlations were found during the

2-back task, between FMRP expression and acti-

vation in the right inferior and bilateral middle

frontal gyri and the bilateral supramarginal gyri.

In an fMRI study of mental arithmetic in females

with the full mutation, Rivera et al. (2002) found

that, in response to increasing arithmetic complex-

ity (i.e., going from 2-operand to 3-operand addi-

tion and subtraction problems), participants with

FXS did not recruit the prefrontal-parietal-cerebellar

network known to be involved in arithmetic pro-

cessing in unaffected participants. With respect

to molecular measures, this investigation showed

that as levels of FMRP increased in individuals with

FXS, so did task-related activation in areas that are

involved in arithmetic processing in typically

developing subjects, providing evidence of a direct

relationship between decreased FMRP expression

and impairments in mental arithmetic perform-

ance in persons with FXS (see Figure 13.2).

Menon et al. (2004) used fMRI with a response

inhibition task (go/no-go) in 10- to 22-year-old

females with the full mutation and age- and

gender-matched typically developing controls.

Although behavioral performance on the go/no-go

task was equivalent in the two groups, females with

FXS showed abnormal activation patterns in several

cortical and subcortical regions, with significantly

reduced activation in the supplementary motor

area, anterior cingulate and midcingulate cortex,

basal ganglia, and hippocampus. The investigators

also found neural responses in the right ventrolateral

prefrontal cortex (PFC) and bilateral striatum that

correlated with the level of FMR1 gene expression.

In addition to task-related activation impairments,

reduced levels of “deactivation” were observed in

the ventromedial PFC, and, furthermore, these

reductions were correlated with the level of FMRP.

As a whole, these results provide direct evidence

that decreased FMRP expression underlies impair-

ments in cognitive performance in persons with the

full mutation.

Findings from studies of the premutation

Potential gene-brain-behavior relationships are also

beginning to emerge in studies of those with the

fragile X premutation. Recently, Hessl and colleagues

Figure 13.2. An example of the relationship between genes, brain and behavior. Brain areas (prefrontal and parietal)

which show, for participants with fragile X syndrome, a significant correlation between FMRP and brain activation for

3-operand arithmetic equations. Adapted from Rivera et al., 2002, Human Brain Mapping, 16 (4), 206–218.
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reported findings from an fMRI study of amygdala

function in 12 adult men with the premutation

(who did not exhibit clinical evidence of FXTAS)

who were compared to a group of 13 premutation-

negative men who were matched on age and IQ

(Hessl et al., 2007). When viewing fearful facial

expressions compared to viewing scrambled faces

(fear-control contrast), the premutation group

showed less overall activation as well as signifi-

cantly different patterns of activation compared

to controls. The control group showed strong

activation in the superior temporal sulcus (STS)

bilaterally, left and right lateral orbitofrontal gyrus,

bilateral insula, and amygdala. These areas, usually

associated with social cognition or emotion pro-

cessing, were not activated in the premutation

group. Follow-up region-of-interest (ROI) analyses

confirmed that premutation carriers failed to

activate the amygdala, whereas the control group

showed robust bilateral amygdala activation. In the

premutation group, neither CGG repeat length nor

FMR1 mRNA was significantly associated with

amygdala activation; however, we did find that

these measures were negatively associated with left

insular activation during this task. Though the male

premutation participants in this study (average age

of 43 years) did not demonstrate overt symptoms

of FXTAS, the findings of aberrant brain activation

in this group might reflect presymptomatic brain

changes associated with elevated mRNA instead of,

or in addition to, specific pathogenic effects on the

brain associated with the premutation.

Fragile X-associated tremor/ataxia
syndrome findings

We have also recently completed fMRI studies

in males with FXTAS using tasks involving the cere-

bellum, as well as prefrontal and parietal cortices

(Rivera et al., under review). The results of this

study show a dissociation between cerebellar activ-

ity for a motor timing task and a cognitive, mental

arithmetic task. Relative to controls, premutation

carriers exhibit hyperactivation of the cerebellum

(particularlymore inferior/posterior and contralateral

regions) while performing a motor timing task, and

hypoactivation of the cerebellum during simple

mental arithmetic. This dissociation suggests cere-

bellar dysfunction that is more than just a dimin-

ished capacity for functional activation and more

specifically points to potential neuropathogenic

mechanisms for this dysfunction.

Therapeutic advances in fragile X syndrome

Advances in our understanding of the development

of FXS have led to a number of targeted therapeutic

treatments in FXS. One example of these advances

is the metabotropic glutamate receptor 5 (mGluR)

theory of FXS, which posits that exaggerated signal-

ing in mGluR pathways may underlie many of the

cognitive, behavioral, and neurological symptoms

of FXS (Bear et al., 2004). In the absence of FMRP,

excessive mGluR-mediated dendritic translation

is predicted to lead to excessive internalization of

a-amino-3-hydroxy-5-methylisoxazole-4-proprionic

acid (AMPA) receptors, excessive synaptic weakening,

and the structurally immature-appearing elongated

dendritic processes, which have been documented

in both the FMR1-knockout mouse and in post-

mortem brain tissue of humans with FXS. These

insights into the defects in synaptic integrity and

plasticity in FXS have led to the proposal of several

pharmacotherapeutic targets in FXS to attempt to

normalize synaptic connectivity, including AMPA

receptor activation. One such compound is an

AMPA receptor-positive modulator (ampakine).

Clinical trials of ampakine, which can enhance

synaptic strength and may partially correct the syn-

aptic transmission defect in FXS, are now ongoing

(Berry-Kravis et al., 2006). The hope is that this

treatment can lead to improvement in cognitive

and behavioral functioning in individuals with FXS.

Likewise, fMRI studies have also begun to guide

therapeutic treatments for FXS. For example, imaging

studies have indicated that the basal forebrain

and hippocampus show significantly reduced acti-

vation during a memory encoding task (Greicius

et al., 2004). These brain areas are ones in which
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the neurochemical acetylcholine is found in high

concentrations and in which the highest FMR-1

transcription is found (Abitbol et al., 1993). Such

findings have led to clinical trials of the medication

donepezil (Kessler et al., under review), which has

been shown to enhance acetylcholine function in

the brain, to determine whether the compound will

have a beneficial effect on behavior or cognition in

individuals with FXS.

Conclusions

In this chapter, we have used the model of FXS, a

single-gene disorder that has a range of phenotypic

variants, to demonstrate a gene-to-brain-to-behavior

approach in understanding neuropathological devel-

opment. Because knowledge of the specific molecu-

lar basis and the neurobiology of fragile X has grown

tremendously, it also represents an important gen-

etic model for other neurodevelopmental disorders.

Symptomatic commonalities among FXS and other

pervasive developmental disorders such as autism

and Rett syndrome may reflect an overlap in under-

lying neural circuits and pathways and hence

shared pathophysiological mechanisms. Therefore,

the possibility exists that new therapeutics developed

to treat FXS also may have efficacy in treating

individuals with these other disorders. Autism, for

example, occurs in approximately 30% of children

with FXS with an additional 20% meeting the

criterion for pervasive developmental disorder-not

otherwise specified (PDD-NOS) (Hatton et al., 2006;

Kaufmann et al., 2004; Rogers et al., 2001). The

remaining 50% of children with FXS who do not

meet criteria for autism spectrum disorders often

exhibit autistic symptoms including poor eye

contact, unusual hand mannerisms such as hand

flapping, and tactile defensiveness. Because 2%–6%

of individuals with autism will have the fragile

X mutation (Persico and Bourgeron, 2006; Reddy,

2005; Wassink et al., 2001), FXS is the most common

known single-gene disorder associated with autism

at this time. Targeted treatments for the neuropatho-

logy and neurobiological abnormalities of FXS may

thus turn out to be helpful in treating autism

spectrum disorders. Therein lies the promise of a

truly successful roadmap for the “molecules to

mind” brand of translational research, in which

converging research in molecular, behavioral and

neuroscience disciplines, across multiple model

systems, will lead us in the direction of new thera-

peutics for complex human diseases.
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